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Abstract 

As an intuitive concept, molecular similarity has played a fundamental role in 
chemistry. It is implicit in Hammond's postulate, in the principle of nlinimunl 
structure change, and in the assumption that similar structures tend to have similar 
properties. With the advent of large computers, computable definitions of similarity 
are being used in the pllarmaceutical industry for similarity searching, dissimilarity 
selection, molecular superpositioning, structure generation, and quantitative 
structure-acti»ity analysis. The diversity of applications of computable definitions 
of molecular similarity has of ten obscured important mathematical commonalities 
underlying these definitions. The broadest commonalities are relationships based 
on equivalence, matching, partial ordering, and proximity. A mathematical space 
suitable for molecular similarity analysis consists of a set of mathematicaI structures 
and one or more of these similarity relationships defined on that set. This report 
surveys the inathematical spaces used in molecular similarity analysis. The survey 
covers the types of chemical information, similarity relationships, and applications 
associated with the use of each mathematieal space in a molecular similarity context. 

1. Introduct ion  

As an intuitive concept, molecular similarity has played a fundamental role in 
chemistry. The concept occurs in the widely recognized statement that similar 
structures have similar properties [1]. Quantitative applications of this statement 
in the pharmaceutical industry include similarity searching, dissimilarity selection, 
molecular superpositioning, and quantitative structure-activity analysis. The intuitive 
concept occurs in the principle of minimum structure change [2] which states that 
chemical reactions proceed so as to minimize the redistribution of valence electrons. 
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Quantitative applications of this principle in organic chemistry include the classification 
of reactions and the generation of reaction intermediates and reaction pathways. 
Finally, the intuitive concept occurs in Hammond's postulate [3] that if a reaction 
is exothermic, the transition state resembles the reactants more closely than the 
products. Quantitative investigations of this postulate are beginning to appear in the 
physical-organic chemistry literature. 

The advent of high-speed computers has opened up many possible applications 
of molecular similarity analysis (MSA) in computer-assisted chemistry. The diversity 
of the applications has resulted in the development of a wide variety of similarity 
measures. A need and opportunity have arisen for constructing a formalism for 
molecular similarity analysis. Such a formalism is necessarily based on features that 
characterize and distinguish molecular similarity concepts. However, research on 
computable concepts of similarity is widely dispersed in many unrelated journals 
and symposia proceedings. Not surprisingly, the underlying concept of molecular 
similarity goes unstated in the literature, if not unrecognized. 

This study focuses on four distinct mathematical relationships, each of which 
constitutes a possible definition of similarity relevant to chemistry: equivalence, 
matching, partial ordering, and proximity. Most approaches to MSA share one or 
more of these relationships. These relationships arise in the context of a mathe- 
matical space. A mathematical space suitable for MSA will be defined to consist 
of a set X of mathematical representations of molecules and one or more similarity 
relationships defined on X. This study surveys the mathematical spaces that have 
been used in MSA and classifies molecular similarity measures according to their 
underlying mathematical spaces. In attempting this classification, most of the mathe- 
matical definitions of similarity that have been used in MSA are discussed. 

Most concepts of molecular similarity have been proposed in applied contexts. 
Applications of similarity concepts in chemistry are so numerous that an exhaustive 
coverage would detract from out focus on the underlying mathematical spaces. The 
applications cited here are chosen to illustrate the diversity of the contexts for which 
explicit similarity concepts have been proposed. Although not specifically addressed, 
methods of computing the similarity between molecules are covered and often 
emphasized in the cited studies. Thus, this study can also be viewed as a fairly broad, 
but certainly not exhaustive, introduction to and review of the literature on mathe- 
matically explicit approaches to MSA. 

Only approaches to similarity that involve reflexive relationships will be 
covered in this study. A similarity relationship will be called reflexive if an entity is 
at least as similar to itself in the relationship as it is to anything else. The similarity 
measures arising in the distance geometry approach of Crippen [4], the minimum 
topological difference method of Simon et al. [5], and the geometric approaches of 
Kuntz et al. [6] and DesJarlais [7] are not reflexive. Rather, these measures are 
based on the complementary relationship between a ligand and either an observed 
or hypothesized receptor site of an otherwise noncomparable macromolecule. We 
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shall also exclude from this study those mathematical definitions of similarity that 
are not broadly transportable to other sciences, kater we will distinguigh between 
the chemical description and the mathematical representation of a molecule in MSA. 
The mathematical representations and associated similarity relationships described 
here are broadly relevant to a wide variety of nonchemical sciences. This is not the 
case for the similarity concepts occurring in DuChamp [8] and Hopfinger [9]. These 
approaches use the concept of a potential function whose form and parameters are, 
for the most part, unique to the chemical sciences. Finally, approaches defined only 
for special subclasses of compounds such as, for example, amino acids [10] will 
also be excluded due to space considerations. In doing so, we will ignore another 
broad area of research involving the comparison of protein and DNA sequences [11]. 
Although a significant amount of research involving concepts of molecular similarity 
is excluded from this study by the preceding restrictions, a broad, and we hope to 
show, integrated body of research remains. The next two sections define mathe- 
matical relationships that will be used to relate the various concepts of molecular 
similarity proposed in that research. 

2. Basic m a t h e m a t i c a l  concep t s  o f  s imi lar i ty  

Let C and C' denote two molecules. Chemically, we can envision many ways in 
which C and C' might be similar. For example, they may contain common functional 
groups, exhibit similar physicochemical properties, and/or have similar shapes. 
Different definitions of molecular similarity can have important mathematical com- 
monalities. For example, one investigator may assess similarity between two van der 
Waals surfaces, while another investigator may assess the similarity between the 
contour surfaces of two molecular orbitals. Both of these surfaces are examples of 
what we shall term the chemical descriptions of their investigations. Although the 
two assessments of similarity differ markedly in their chemical descriptions, both 
descriptions represent examples of mathematical surfaces defined on a three- 
dimensional euclidean space. Consequently, the same mathematical formulas can be 
used to compute similarity once the chemical descriptions have been mapped to the 
appropriate mathematical surfaces. The surfaces defined on R 3 are examples of 
mathematical structures that can be associated with molecules. Other examples of 
mathematical structures are numbers, vectors, functions, scalar fields, graphs, and 
groups. The two methods of assessing similarity use the same type of mathematical 
structures to represent the information in their respective chemical descriptions. 
This is significant because the computation of similarity is always defined in terms 
of the mathematical representation of the chemical description. 

One may ask what types of mathematical concepts of similarity have been 
used in MSA. We shall distinguish four types, which will be illutrated with labeled 
graphs as the mathematical structures. Although we shall use labeled graphs to illustrate 
these concepts of similarity, the concepts are associated with a variety of other mathe- 
matical structures being employed in MSA. 
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2.1. EQUIVALENCE 

A labeled graph L = (V, E, l) consists of a set V of vertices, a set E of edges, 
and a labeling function l mapping each vertex u to a vertex label/(v) and each edge e 
to an edge label l(e). ~le labeled graph L will be called a chemical graph of com- 
pound C if the labeled vertices denote the nonhydrogen atoms of C~ and the labeled 
edges denote the types of bonds connecting two nonhydrogen atoms. The chemical 
graph of C is often represented as a connection table when stored or manipulated in 
a computer. 

If A and B denote two molecules, we shall, for the moment, write A ~- B to 
mean .d and B have identical chemical graphs. For example, D-glucose and L-glucose 
are stereoisomers and, consequently, have identical chemical graphs. Thus. we would 
write D-glucose -~ L-glucose. To write A -- B is to indicate that A and Bare  similar 
in a fundamental way. Clearly, A -~ B implies A and B agree in all properties deter- 
mined solely by the chemical graph of a molecule. 

The relation-~ is an example of an equivalence relation. Equivalence 
relations in mathematics are defined by three properties: reflexivity, symmetry, and 
transitivity [12]. A relation is reflexive if A --- A for all molecules A. It is symmetric 
if A -- B implies B -- A. It is transitive i fA -- B, and B ~ Cimplies A "~ C. Let [A] 
denote the family of those molecules equivalent to A with respect to - .  If B denotes 
some other molecule, it can be proven mathematically that either [A ] and [B] denote 
the same set of molecules or the two sets have no members in common. The set [A] 
is called an equivalence class. 

Equivalence relations abound in chemistry. To illustrate, redefine A ~ B to 
mean A and B have identical chemical descriptions of type d. Hefe, a type of chemical 
description can range from a melting point to a set of chemical properties, ffom a 
chemical formula to a structural formula, from an infrared carbonyl stretching 
frequency to an infrared spectrum, and from a van der Waals surface to a molecular 
orbital contour surface. Regardless of the type of chemical description,-~ is an 
equivalence relation. 

The types and uses of equivalence relations in chemistry are too extensive and 
too varied to be adequately covered within the scope of this study. Instead, attention 
will be focused on contexts involving an equivalence relation augmented by one or 
móre additional similarity relationships based on matching, partial order, or proximity. 
Euclidean spaces involve all of these relationships plus the important operations of 
addition and multiplication. The elements of an n-dimensional euclidean space are 
vectors. However, the elements of many of the mathematical spaces of MSA are not 
vectors, but rather sequences, graphs, distance matrices, volumes, and so forth. We will 
exclude from this study the wide variety of work premised on euclidean spaces that 
does not readily carry over to these other interestingmathematical spaces. In particular, 
important work on predicting chemical properties using quantum-mechanical models 
and linear regression models will be excluded. These two approaches to predicting 
chemical properties are distinguished from similarity-based approaches in Johnson 
et al. [13]. 
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2.2. MATCHING 

Let us return to our original definition that A ~ B implie~ l and B have 
identical chemical graphs. Let Ga denote the chemical graph of A. One might ask 
what Ga and Gt~ have in common. A matching is a correspondence of features of Ga 
with features of Gb. Because Ga constitutes a specification of [A ], a matching can be 
viewed as a similarity relationship between equivalence classes. The methods of 
specifying a matching of two mathematical structures usually depends on the form 
of those structures. A method of expressing a matching of two chemical graphs will 
be illustrated. 

Consider the chemical graphs L and L' depicted in fig. 1. A matching of 
L and L'  is a one-to-one correspondence between some vertices of L and some of 
L'. In fig. 1, matched vertices are subscripted with identical indices and unmatched 

I F 

C 3 C2 

/ \  / \  
01 - -  c 2 0 1 - - c  3 

/ 

L L 

Fig. 1. A matching of chemical graphs L and L'. 

vertices are not subscripted. If vertex v of L is matched with vertex v' of L',  then 
l(v) must equal l(v'), i.e. v and v' must agree in their vertex type. If, in addition, 
vertex u of L is matched with vertex u' of L'  and if uv is an edge of L, then u'v' 
must be an edge of L'  of the same edge type. In the same manner, if u'v' is an edge 
of L', then uv must be an edge of L of the same edge type. 

A matching resembles an analogy. In an analogy, features of one entity are 
paired with features of another entity. Which features are paired is often a subjective 
choice. Similarly, there are many possible matchings between the features of a mathe- 
matical representation of one molecule and of a mathematical representation of 
another molecule. In fig. 1, other matchings are obtained by permuting indices 2 and 3 
in L or by deleting index 2 in both L and L'. The suitability of a particular matching 
depends on the context of the problem. In the next section, we will discuss some of 
the methods by which a particular mätching is selected. 

2.3.  PARTIAL ORDERING 

Let A and B denote two labeled graphs where some of the vertices of each 
graph are subscripted so as to define a matching of A and B. If all of the vertices of 
A are subscripted, A is called a subgraph of B. For example, by deleting the vertex 
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labeled I in chemical graph L of fig. l ,  we see that the resulting graph G (representing 
ethylene oxide) is a subgraph of L'. For the moment, we shall write A <_ B to mean 
A is a subgraph of B. 

The relation < is called the subgraph partial order. A relation <_ is called a 
partial order if it is reflexive, antisymmetric, and transitive. The reflexive and transitive 
properties of a relation were defined earlier. A relation is antisymmetric if A < B and 
B < A implies A and B are identical. When the labeled graphs refer to chemical 
graphs, the subgraph partial order will also be called the substructure partial order. 

A partial order < on a finite set X can be represented by a graph as follows. 
Assume u and w are members of X, and that u < w. If u <_ u <_ w implies either 
u = u or u = w, i.e. there are no members of X between u and w, then w is said to 
cover u. Define the graph G = (X, E) such that uw is an edge of G if and only if 
u covers u' or w covers u. Call G the graph of the partial order (X, <_) and denote 
G by G(X, <). Figure 2 depicts the graph of the substructure partial ordering of 
six alkanes. 

F- P e n t a n e  

E - I s o p e n t o n e  

D - B u t a n e  

C - l s o b u t o n e  

B - P r o p o n e  

A -  E thone  

Fig. 2. The graph of the substructure partial ordering of six alkanes. 

Several concepts of similarity relevant to chemistry are based on the concept 
of a partial order. For example, when we speak of a ketone, we refer to a set of 
molecules having the chemical graph C=O as a substructure. Let G denote the ketone 
structure C=O. The set of ketones is defined mathematically as those chemical graphs 
G' for which G < G'. This illustrates a membership relationship based on a partial 
order. A betweenness relationship based on the graph of a partial order can be illu- 
strated using fig. 2. In this figure, isopentane (E) is between isobutane (C) and 
pentane (F )  because lsopentane lies on a shortest path connecting isobutane and 
pentane. Finally, a distance relationship between the vertices of the graph of a partial 
order is given by the length of the shortest path connecting two vertices. For example, 
in fig. 2 the distance between isobutane and pentane is 3. 

Although the concept of matching arises quite naturally in most developments 
of similarity based on partial orderings, a partial ordering of chemical descriptions 



M.A. Johnson, Mol«cular similari O, 123 

which is developed without  the use of  the concept of  matching is described in 
section 13 on groups. 

2.4. PROXIMITY 

The preceding distance relationship is an example of  using a number to 
express the similarity between two molecules. Mthough terminology and notation 
varies [14 ,15] ,  we shall denote a measure of  similarity between mathematical struc- 
tures D and D'  by v(D, D ' ) .  Following the terminology of  Borg and Lingoes [14] ,  
we shall call the function v a proximity measure. 

M1 the proximity measures we shall encounter  use nonnegative numbers to 
express similarity. When large numbers represent similar compounds,  the proximity 

measure will be called a similarity measure or similarity coefficient.  Correlation 
coefficients are similarity measures whose values vary from 0 to 1, with 1 denoting 
an exact correlation between the features of  two chemical descriptions. We will write 
s(D, D') for u(D, D ' )  to emphasize that u is a similarity measure. 

When large numbers represent dissimilar molecules, the proximity measure 
will be called a dissimilarity measure or distance function. We will write d(D, D') 
for ü(D, D') to emphasize that v is a dissimilarity measure. Most of  the dissimilarity 
measures we discuss are metrics. A dissimilarity measure d is a metric if d is a non- 

negative function satisfying (1) d(x, .V ) = 0 i fand  only if x = y ,  (2) d(x, y ) = d(y, x), 
and (3) d(x, z) «, d(x, y )  + d(y, z). Property (3) is called the triangle inequality. 

We shall write # for d when we wish to stress that d is a metric.  

2.5. SIMILARITY CONCEPTS ON DERIVED REPRESENTATIONS 

Frequently,  one encounters cases in which one mathematical representation 
of  a molecule is derived from another  representation. For example, given a configu- 
ration of  n atoms in R 3 , o n e  can derive an n x n distance matrix giving the pairwise 
distances between the atoms. 

Derived representations provide a method  of  transferring a similarity concept  

defined on one mathematical space to another  space. To illustrate the transference of  
a proximity measure, let U and V denote any two sets of  mathematical structures 

being used to represent molecular information.  Ler f (u)  denote the structure in V 
derived from the structure u in U. For example,  u may be a 3D configuration, and 

f(u) may be the pairwise interatomic distance matr ix of  u. Ler co be a proximity  
measure defined on V. Define the proximity measure u on U by 

~,(u, u ' )  = c o ( / ( u ) , ¢ ' ( u ' ) ) ,  (2.1) 

where u and u'  are any two members of  U. 

The properties of  co that are transferred to v depend on the nature of  f .  For 
example,  suppose co is a metric.  It is easy to show that v is symmetric and satisfies 
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the triangu!ar inequality. Yet v, need not be a metric. To see this, let j b e  our earlier 
mapping of  steroechemical structures to labeled graphs in which u = D-glucose and 
u'  = L-glucose were mapped to the same chemical graph G. We have 

~,(u, u') = co( . t (u) , t (u ' )  

= oo(Ò. Õ' )  

= O .  (2.2) 

Since we know u and u' denote different stereochemical structures, v cannot be a 
metric, since property (1) of  metrics is not guaranteed. However, it can be shown that 

». is a semimetric. 
Still. mappings deriving one representation of  molecules in terms of  another  are 

widely used in MSA. Figure 3 is a "derivational" flowchart in which the arcs indicate 
derivations used in MSA. We will parenthatically indicate each derivational arc when 
the associated derivation is covered in the body of  the text.  

o c h e ~  
c t u ~ / . J  

~J 
Braphsj \ 

Finite 

~ j 

\ 

Fig. 3. A flowchart ofderivations connecting 
mathematical representations of molecules. 
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3. T y p e s  o f  ma tch ings  

As we have seen, matching is a basic similarity concept and is frequently 
used in the development of partial orders and proximity measures. The number of 
possible matchings tends to grow explosively with the complexity of the mathematical 
structure, A variety of methods of selecting one matching flom amongst the many 
possibilities have been developed. We group these methods into three types. 

3.1. A PRIORI MATCH1NG 

AS noted earlier, a matching is a one-to-one correspondence between a subset 
of the elements of one mathematical structure with a subset of the elements ofanoiher 
mathematical structure. In fig. 1, the matching was indicated by indexing the elements 
with subscripts. 

The elements in fig. 1 could have been indexed in many different ways. As 
noted earlier, subscripts 2 and 3 of L could be permuted to obtain another matching. 
This choice might reflect an hypothesis that the carbons attached to the halogens 
should be matched. The grouping of the letters F and I under the lerm "halogen" 
introduces a chemical concept in fig. 1 not explicitly present for either the nonchemist 
or the computer. The basis of this matching hypothesis, although valid, lies outside 
our confine of computable similarity concepts. Consequently, we shall call the selected 
matching an a priori matching. 

The rationale of a matching hypothesis is sometimes questioned and sometimes 
not. One might reasonably question the preceding hypothesis that the carbons 
attached to the halogens should correspond to each other. On the other hand, consider 
the matching impticit in the comparison of two vectors ( u ~ , . . .  , u n ) a n d  (v~ . . . .  ,v,7) 
of chemical descriptors [16]. Hefe, we match u I with v l, u 2 with v a , etc., without 
giving this a priori matching a second thought. 

3.2. CANONICAL MATCHING 

Other approaches to selecting matchings begin by putting each mathematical 
structure in a standard form. The matching of two structures is then defined in terms 
of the standard form. For example, in section 9 we show how a chemical graph G of 
molecule C can be represented as a sequence of letters. It turns out that a number of 
different sequences can represent G. The first menWer in the lexicographical ordering 
of these sequences can be viewed as a standard form of C, Assume atoms u and u 
of the chemical graph of molecule C are of the same type and u precedes u in the 
standard form of C. Assume also that u and u are matched with atoms u' and u' of 
the chemical graph of molecule C'. A canonical matching might require that u' 
precede u' in the standard form C'. 

A canonical matching can also be viewed as the outcome of an hypothesis 
on what elements of two chemical descriptions should be paired. However, in this 

case the hypothesis is embedded in a computable algorithm. 
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3.3. MAXIMAL MATCHING 

A priori and canonical matchings are essentially determined before any 
elements of two mathematical structures are explicitly paired. To develop a maximal 
matching, one first associates a numerical value with each matching. A matching is 
maximal it" it has the smallest/largest associated numerical value. 

To illustrate using chemical graphs, let the numerical value associated with a 
matching be the number of atoms and bonds without counterparts in the other graph. 
For example, the value for the matching in fig. 1 would be 4 since two atoms (1 fluorine 
and 1 iodine) have no counterparts in the other graph and neither do their associated 
bonds. One can show that the numerical value for any other matching of the chemical 
graphs in fig. 1 is at least 4. Thus, the matching in fig. 1 is a maximal matching with 
respect to this method of associating a numerical value with a matching. 

As noted earlier, the concepts of equivalence, matching, partial ordering and 
proximity are defined on a variety of other mathematical spaces being employed in 
MSA. We now consider each of these mathematical spaces indicated in fig. 3, beginning 
with the real numbers, an important special case of a vector space. 

4. Real  number s  

Possibly the simplest chemical description D ofa molecule C is a single number. 
Because of its importance, a single number used as a chemical description will be called 
a chemical des«ril)tor. Any scalar chemical property can be viewed as a chemical 
descriptor. The use of chemical descriptors in regression analysis has been excluded 
from this study because such analyses fall to extend to the majority of the mathe- 
matical spaces under consideration. Under this restriction, the only chemical descriptors 
used in MSA appear to be topological indices. A topological index is a number calcu- 
lated from the chemical graph that is independent of the method of representing the 
graph (see arc d, fig. 3). Balaban et al. [17] review a number of topological invariants 
or indices. When the number of chemical graphs having the same value for the 
topological index is small, Randid [18,19] refers to the index as a molecular identifi- 
cation number. Unique molecular identification numbers have been conjectured to 
exist, but have yet to be found [10,21]. Razinger et al. [20] and Szymanskiet al. [21] 
review progress toward the development of unique molecular identification numbers. 

As numbers, the values of a topological index are linearly ordered. A partial 
order < on a set X is a linear order if for every x and y in X, either x < y or y 5_ x. 
The natural metric on numbers is the absolute value of the difference between two 
numbers. We say two compounds C and C' with associated numbers r and r' are 
similar if Ir - r ' l is  small. 

Recently, molecular identification numbers have been proposed for the index- 
ing of structures in a chemical database [18,19]. Randi~ [22] has proposed that the 
absolute value of the difference between two such numbers be used as a dissimilarity 
measure for clustering compounds. 
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5. Product spaces 

In the preceding section, the chemical description was based on a single chemical 
descriptor. Here, the description is based on a vector of chemical descriptors. Vector 
descriptions proposed in an MSA context include mass spectrum relative intensities [23], 
counts of various lengths of paths in a chemical graph [24], topological distances 
between types of atom pairs [25], counts of atom-centered fragments [26], counts 
of bond-centered fragments [27], the first ten principle components of a selected 
set of 90 topological indices [28], and counts of atoms and bonds [29] (arc el of 
fig. 3). Hansch [30] uses substituent constants as descriptors of substituents. Sections 
9 and 11 give additional applications of vector descriptions. 

Since we always compare the /th component of one vector with the ith 
component of the other vector, the matching problem does not arise with vectors. If 
we let x = (x I . . . . .  Xn) and y = (y~ . . . .  ,Yn),  then an important partial ordering on 
vectors is defined by x < y if x 1 < ~ 2 1 , . . , x n  ~<Yn. Many proximity measures 
have been used for comparing vectors [15,31].  Some common ones include the L 1 
or city-block metric /l~ (D, D' ) given by 

U 1 (D, D '  ) = Z I xk - )'Ic I. (5.~) 

the L 2 metric/./2 (D, D') or euclidean metric given by 

/12(D,D' ) = 4 Z ( x k -  yk) 2 , (5.2) 

the correlation coefficient s I (D,  D'  ) given by 

(x  k - 2 )  ( Yk - Y )  
s~ (D, D ' )  = , (5.3 

v/Z(xk - .~~~ x Z % - Y) 2 

where 2- denotes the mean of x i . . . . .  x n,  and the Tanimoto coefficient s2(D, D')  is 
given by 

E Xk Yk 
s 2 (D, D')  = (5.4) 

Z x~ + E »,~. - Z xk yk 

When structural fragments are used for descriptors, one has the choice of letting x i 

denote the simple occurrence or nonoccurrence of the /th fragment or letting x i 

denote the number of times the fragment occurs. These are speciäl cases of the more 
general problem of assigning weights to the fragments [15,27].  

The descriptive flexibility and computational accessibility of vectors has 
resulted in their wide use as chemical descripfions. The partial ordering of vectors 
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underlies their popular use in the Screening step of substructure searches of large 
chemical databases [32]. The preceding proximity measures are routinely used 
in similarity analysis involving multidimensional scaling [33], nearest neighbor 
prediction [34], and cluster analysis [ 3 5 - 3 7 ] ,  These measures are being used in 
querying databases containing spectral information [23,38] ,molecular structures [24], 
and reactions [39]. They are being used to select compounds for screening [29] 
based on testing similar compounds [26] and on testing dissimilar compounds [40], 
and they are being used to select substituents in lead optimization [30,41,42].  Finally, 
they have been used to identify active substructures in structure-activity studies [43] 
and to suggest that members of a series of biologically active compounds are acting 
by different mechanisms [44]. 

6. Distributions 

A veclor (1)~ . . . . .  p,~) of nonnegative numbers that sum to one constitutes 
a par~lmeter vector of a multinomial distribution (arc f in fig. 3). Such a vector can 
be associaled wilh a molecule in many ways [45]. One used in MSA [46,47] is 
defined as follows (arc e in fig. 3): Let (~i denote the number of self-avoiding (no 
verlex occurs more than once) paths of length i, i = 1 . . . . .  k. in the chemical graph 
of the compound [24]. For example, in chemical graph L of fig. 1. 62 = 10 since 
lhere are 3 paths of length 2 starting from O l . 3 from C 2, 2 from C 3 and 2 from I 4 . 
Defme ])i by 

(6.1) 
t ) i  - k 

i 

so that the Pi'S sum to one. 
The facl that the vector ( p ~ , . . , p n )  characterizes a distribution gives rise 

to special similarity measures based on the concepts of information theory. One 
such measure that has been used in MSA is the informationalty-based measure of 
Jeffreys [48]. He defines the similarity between two multinomial parameter vectors 
p = M ( p  I . . . . .  pk)and Q = M ( q l , . . . , q k ) b y  

«~ (P, Q) = Z (Pi - q i ) l °g2  (P i / q i )  " (6.2) 

Since log(0) and log(M) are not defined, we must restict the value of k in (6.1) so that 
6 k > 0 for all compounds being compared. Rao [49] presents a wide variety of 
proximity measures that have been developed for otherdistributions. 

To my knowledge, similarity measures based on distributions have always 
been used to construct other chemical descriptions. The construction procedure 
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generates descriptions which are finite sequences. Since the construction procedure 
is defined for any finite set of compounds for which a proximity measure is available, 
the procedure will be described in section 9 on finite sequences. This construction 
procedure has been used as an intermediate step in quantitative structure-activity 
analyses [46,47].  

7. Finite  sets 

A finite set is the natural chemical description when comparing compounds 
with respect to molecular fragments. The molecular formula is probably the foremost 
example. For example, the molecular formula for chemical graph L in fig. 1 can be 
represented by the set{01,C1,C2,I  1} (arc b in fig. 3). Hefe we require that the 
subscripts start with 1 and end with the number of occurrences of the associated 
atom type. This requirement ensures that the intersection of the set representations 
of the molecular formulas for butane and pentane is four carbons, as we would expect. 
Section 5 on product spaces reviewed lists of structural fragments that have been used 
in assessing molecular similarity. 

As we have seen, vectors have been used to represent the set of structural 
fragments occurring in a molecule. Here, the ith value of the vector represents the 
number of times the ith fragment occurs in the molecule (arc c in fig. 3). This vector 
representation is possible only if all fragments come from some fixed list of fragments. 
The list of  atom types occurring in molecular formulas would be an example of  such 
a fixed list. Any fixed list must have a finite number of members. Consider the list L 
of all fragments [50] of chemical graphs. If L were finite, then there would exist 
a fragment with at least as many atoms as any other fragment. Clearly, this is not 
the case. Consequently, L cannot be a fixed list. However, the set of fragments 
associated with any one molecule is finite. Thus, the study of molecular similarity 
based on structural fragments might be more naturally formulated in terms of finite 
sets. 

The intersection of two sets is a unique and natural matching of  the members 
of the sets. The natural partial ordering of sets is based on the subset relation. (The 
preceding use of vectors in the screening step of substructure searching in large 
chemical databases is possibly more naturally viewed as being based on this partial 
ordering of  sets of fragments.) Although many proximity measures have been defined 
on finite sets [15],  we shall only present two common measures that have analogies 
in numerous other mathematical spaces. Assume D and D' are finite sets. The 
cardinality I D I of D is defined to be the number of  points in D. The Hamming metric 
la3(D, D') for finite sets is defined by 

B3(D,D' )  = IDI+  I D ' I - 2 1 D N D ' I  

= ID\D'I + ID'\DI, (7.1) 
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where D\D'  denotes the members of D that are not members of D'. The square of 
the Ochiai similarity coefficient [15] is defined by 

ID ch D' 12 
s3(D'D')  - IDIX ID'I (7.2) 

(The square of the Ochiai similarity coefficient relates more directly to equations 
(8.3), (9.2) and (11.7) than does the Ochiai coefficient itself.) Using the atoms sets 
D = lE 1,C 2 , 0 1 , I  1} and D ' = I C  1,C 2,01 , t71}from chemical graphs L and L' of 
fig. 1, we see that #a(D, D')  = 2 and s3(D, D')  = 9/16. When the list L of possible 
fragments is finite, one can easily set up vector descriptions under the L 1 metric and 
set descriptions under the Hamming metric that give identical measures of molecular 
similarity. 

As already noted, most applications of similarity based on vectors are perhaps 
more appropriately viewed as applications of similarity based on finite sets. The 
Hamming distance is used as a prescreen for finding nearest neighbors based on the 
maximum common subgraph metric on labeled graphs [51]. The preceding proximity 
measures have been used to assess the clustering of active compounds in chemical 
description spaces [29]. 

8. Labe led  graphs  

Chemical graphs are by far the most popular chemical descriptions based on 
labeled graphs. A labeled graph with multiple loops and edges is sometimes called a 
labeled pseudograph [52]. Information on the free valence electrons and bond 
orders [53] and on the group and period of the atoms [54] can be added to the 
chemical graph using multiple loops and edges (arc a in fig. 3). By considering graphs 
with more than one component, Ugi et al. [53] represents the reactants (products) 
by a single labeled pseudograph. Crandell and Smith [55] let the edge labels of a 
complete graph (all vertices are connected) denote interatomic distances (arc ]" of 
fig. 3). 

Sometimes, two labeled graphs are essentially defined on the same vertex 
set. For example, radioactive labeling often enahles us to know which atoms in the 
reactants correspond with which atoms in the products. Such a correspondence can 
be viewed as an a priori matching. We will call it a complete matching sin~e all vertices 
in both labeled graphs are paired. Assume L = (V, E, l) and L' = (V, E ' , / ' )  are two 
labeled graphs with a common vertex set V. Then 

t~4(L,L') = IE\E' I  + IE' \EI (8.1) 

is a city-block metric on labeled graphs with vertex set V, where E \ E '  denotes the 
set oflabeled edges in E that are not in E'.  
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Let L and L' be pseudographs in which the number of loops at a vertex corre- 
sponds to the number of free valence electrons of the corresponding atom and the 
number of  edges connecting two vertices corresponds to the bond order of the corre- 
sponding bonded atoms. Then /a4 becomes the chemical distance defined by Ugi 
et al. [53] under a fixed correspondence between all of the atoms of the products 
and all of the atoms of the reactants. Wochner et al. [56] call the smallest value of 
(8.1), under all complete matchings, the exact minimum of the chemical distance. 

Proximity measures, not restricted to labeled graphs with a common vertex 
set, can be defined as follows [57,58].  Let L = (V, E, l) be any labeled graph. Define 
the cardinality ILI of L by IVI + IEI. Let L '=  (V ' ,E ' , I ' ) be  any other labeled 
graph, ket IMaCS(L, L')I denote the cardinality of the largest labeled graph which is 
a subgraph of both L and L'. The maximum common subgraph metric is then defined 
by 

/as(L, / . ' )  = IL I+  I L ' l -  2[MaCS(L,L')[. (8.2) 

A closely associated similarity measure [59] is defined by 

IMaCS(L, L')12 
s4(L'L') = ILIX IL'I (8.3) 

Let M be a subgraph of  both L and L'. If IMI = IMaCS(L, L')[, then M is called a 
maximum common subgraph of L and L'. The maximum common subgraph of the 
labeled subgraphs L and L' in fig. 1 is the epoxide ring. In this case there is only 
one maximum common subgraph, but generally there may be more than one [56,57]. 
Since the epoxide ring contains 6 elements (3 vertices and 3 edges) and since L and L' 
both contain 8 elements, respectively,/a s (L, L') = 4. 

It should be noted that the subgraph partial ordering is directly involved in 
defining the maximum common substructures. If we consider only connected sub- 
graphs of connected labeled graphs [60] or only complete subgraphs of complete 
labeled graphs [55], we obtain other useful definitions of maximum common sub- 
structures. It might also be noted that if two labeled graphs have a common vertex 
set and if each vertex is assigned a unique label, then eq. (8.2) reduces to eq. (8.1). 
In that sense,/as can be viewed as a generalization o f / a  4 . 

Hendrickson and Braun-Keller [61] define a dissimilarity measure given by 

da(C,C') = Z ( 1 2 x h i l + l A z i l ) ,  (8.4) 
i 

where C and C' are chemical graphs and where Ah i and 2xz i refer, respectively, to 
the overall change in the number of hydrogens and heteroatoms on the ith carbon 
atom. As in eq. (8.1), this dissimilarity measure assumes that C and C' have common 
vertex sets. (Hendrickson and Braun-Keller [61] suggest that d 2 is a metric on 
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chemical graphs. This is unlikely because d2(L,L')  = 0 on all 3-regular graphs in 
which every vertex is connected to 3 other vertices. Thus. one can show d 2 is not 
a metric if one can find two 3-regular chemical graphs of the same order which are 
not isomorphic.) 

Substructure searching of chemical databases is an important application of 
MSA which uses the substructure partial ordering of chemical graphs [62]. The 
subgraph, connected subgraph, and complete subgraph partial orders have all been 
used to define maximal commonalities between compounds [53,56,60,63].  The 
subgraph partial order has also been used to computationally generate generic struc- 
tures in Markush representations of compounds [64] and identify bond changes in 
reactions [65,66]. The counterpart of a maximum connnon subgraph is the minimum 
common subgraph [57], which has been used in representing and classifying chemical 
reactions [67,68].  Maximum common subgraphs have also been used to computa- 
tionally generate structures lying on "lines" connecting two reference structures [54]. 

Ugi et al. [53] has developed an extensive theory of reaction transforms 
based on the vertex matching underlying eq. (8.1). By means of these transforms, 
one can classify reactions [56], suggest new reaction categories [69], generate 
reaction sequences [70] and reaction intermediates [56]. Equation (8.1) and related 
ideas have been incorporated into a principal of minimum chemical distance [2] as 
a "computable" version to the principal of minimal structurai change noted in the 
introduction. Hendrickson and Braun-Keller [61] use their reaction distance to 
prune the generation of irrelevant reaction pathways connecting a set of reactants 
with a set of products. 

The maximum common subgraph metric has been used for nearest neighbor 
property prediction [71] and for quantitative structure-activity analysis [59]. 
Johnson et al. [13] argue that concepts of proximity defined on chemical graphs 
are implicit in all general, nonrandom methods of searching for compounds with 
desired chemical properties. 

9. Finite sequences 

Chemical names, and consequently finite sequences, were probably the first 
chemical descriptions of molecules. The lUPAC and common chemical names are 
currently important finite sequences associated with molecules (arc w in fig. 3). 
Perhaps more useful from a computational viewpoint are the various forms of 
canonical codes which can be used to generate the connection table of the associated 
chemical graph [72 ,73-76]  (arc g in fig. 3). For example, IC1CO1 and FC1CO1 are 
canonical SMILES codes [73] for L and L' in fig. 1. Two successive letters denote 
a single bond between the two corresponding atoms. Two letters followed by the 
same integer indicate a single bond between the two corresponding atoms that com- 
pletes a ring. In the two codes, carbon C1 and oxygen O1 are bonded. 
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Finite sequences have been used in other ways to represent chemical informa- 
tion. Randid [77] assigns to each bond of a molecule a number reflecting the local 
environment of that bond. The bonds of the molecule are inversely ordered by the 
magnitude of  their assigned number. The ith element of the finite sequence is the 
value assigned to the ith bond in this ordering (arc g in fig. 3). Along a different 
line, Randid [78] shows how a finite sequence description of a molecule can be 
generated from any proximity measure u defined for a set of n molecules (arc k in 
fig. 3). To obtain the finite sequence for molecule C, the molecules are ranked by 
their similarity to C. Let Ci(C ) denote t h e / t h  molecule based on this ranking where, 
of course, CI(C ) is C itself. Then, C I ( C ) , . .  ,Cn(C) is the finite sequence for C. 
We shall call this a permutation sequence because each molecule appears once and 
only in the sequence, 

An important partial ordering of sequences found in chemistry is the lexico- 
graphical ordering used in indexing molecules. A second partial ordering is based on 
the subsequence relation. A sequence S = x x , . , .  ,x k is a subsequence of S'  = Yl,.  -. ,yn, 
k ~< n, if S can be obtained by delting orte or more terms from S'. For example, the 
sequence AFAAB is the subsequence obtained from B A B F A A C A C B  by deleting 
the 1st, 3rd, 7th, 8th and 9th terms. A third partial ordering of sequences has been 
defined [77] when the elements of the sequence are numbers of decreasing magnitude. 
In this case, the sequences are partially ordered by the majorization relation, where 
S' is said to majorize S if ~x i = Y~):i and 

X 1 + . . .  +Xj ~3:1 + . , .  +yj  

for all ]'. 

Barysz et al. [46] have proposed a proximity rneasure for permutation 
sequences. Assume C ~ , . . . ,  C n and C i , , . . . ,  Cin are two permutation sequences. The 
ordered subscripts form two vectors (1 . . . .  ,n) and ( i l , . . .  ,in) (arc h in fig. 3). 
Substituting into eq. (5.3). we obtain a similarity measure called Spearman's rank 
correlation coefficient. A number of correlation coefficients are available [79] and 
have been tried [46,47].  

The subsequence partial ordering underlies a number of proximity measures 
available for sequences [11,47].  Let I SI denote the length of the sequence S, and let 
ILCS(S ,S ' ) I  denote the length of the longest common subsequence of S and S'. 
Then, Coggins [80] notes that/a 6 defined by 

#6(S, S ' )  = ISI + IS'l - 21LCS(S,S')I (9.1) 

is a metric. For example, the longest common subsequence of the SMILES codes 
IC1OC1 and FC1OCl is C1OC1. Thus,/a6 (IC1OC1,FClOC1) = 2. 
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Mternatively, think of FC1OC1 as being obtained from IC1OC1 by deleting 
I and inserting F. Deletions (insertions) of sinne characters are examples of elementary 
operations one can perform on a sequence to obtain another sequence. The smallest 
number of such elementary operations that transforms one sequence into another 
defines a metric on finite sequences [76,81]. Different metrics arise depending on 
what elementary operations are admitted and what weights are associated with 
them [81 ]. The metric in (19.1) is obtained in this manner by restricting the elementary 
operations to insertions and deletions, and assigning each of these operations a weight 
ofone.  

A similarity measure on sequences is given by 

ss (S ,S ' )  = ILCS(S,S')I 2 
ISI × IS'I (9.2) 

Although this similarity measure has yet to appear in the chemical literature, it is 
presented here because of its obvious analogy with the similarity measures given in 
eqs. (7.2) and (18.3). A related similarity measure 

$6(8 , S t) -= 1 - f i / 6 ( S ,  S ' ) / (  I S I  + IS' I) (9.3) 

has been proposed by Herndon and Bertz [76]. 
The lexicographical ordering of sequences is routinely used to locate particular 

structures in chemical databases. Subsequence matching is implicit in the generation 
of structural fragments from Wiswesser codes [82] (arc h in fig. 3). Randid and 
Wilkins [78] present a naethod of selecting molecules for screening that involves a 
matching of permutation sequences. Randid [77] shows how the partial ordering 
based on majorization can be used to examine if a particular chemical property can be 
expressed an an additive function of bond contributions. Jerman-BlaZi~ et al. [47] use 
a clustering of finite sequence descriptions of molecules to enhance some quantitative 
structure-activity relationships. Herndon and Bertz [76] use the similarity measure 
in eq. (9.3) to compare two different canonical coding schemes. 

10. T r a n s f o r m s  

Let Z i denote the atomic number of the ith atom in chemical graph C, and let 
6ij denote the topological distance between atoms i and/ .  The topological distance 
between atoms i and j is the number of edges in a minimal path connecting atom i 
to atom j (arc i in fig. 3). Following the approach of Soltzberg and Wilkins [83], 
Gabanyi et al. [84] define the topological transform t(s) for chemical graph C by 

sin (s 6q) 
t ( s )  = k(C)~XZiZ j söiJ (10.1) 
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where k(C) is a normalizing constant such that 

O¢J 

f It(s)l 2 (arc m fig. 3). ds 1 in 

0 

Let t I and t 2 denote two such transforms for chemical graphs C~ and C 2. 
Then, the distance between t 1 and t 2 based on the L 2 metric is given by 

B•(tl , t2) = Itl(s)-t2(s)12ds (10.2) 

0 

Gabanyi et al. [84] use this metric as a dissimilarity measure for establishing quanti- 
tative structure-activity relationships. 

1 1. T h r e e - d i m e n s i o n a l  s t ruc tu re s  

Compounds exist in three-dimensional space. Included in the wide variety of 
3D chemical descriptions that have been addressed from a similarity perspective are 
finite sets such as atomic configurations [85], surfaces such as molecular surfaces 
and potential contours [86], and various integrable functions such as molecular 
volumes [87] and molecular density functions [88]. Standard molecular modeling 
programs provide procedures for deriving 3D configurations from stereochemical 
structures (arc o in fig. 3), deriving scalar fields from 3D configurations (arc r in fig. 3), 
and deriving surfaces from scalar fields (arc s in fig. 3). 

Proximity measures are computed quite differently, depending on whether 
or not the 3D chemical description is a finite set, a surface, or an integrable function. 
However, there are significant commonalities in the preliminary problem of appropri- 
ately superimposing two 3D descriptions. 

A priori matchings use rotations and translations to optimally superimpose 
features of one 3D-structure that have been paired with features of another 3D- 
structure. The particular paired features may be selected based on hypotheses relating 
the behavior of particular atoms or functional groups [87,89],  or they may be 
selected based on maximal matchings of distance matrices (see section 12)associated 
with the two molecules [55,90].  

Canonical matchings arise when internal canonical coordinates are defined 
on the 3D-structures. For example, the first, second and third moments of inertia 
of the mass distribution may serve as canonical coordinates with the origin at the 
center of mass. A matching between two structures is then defined by simply aligning 
their respective internal canonical coordinates. 

Maximal matchings arise if the translations and rotations are iteratively selected 
by gradient methods defined in terms of the proximity measure of interest [86]. The 
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gradient methods often generate matchings which are locally maximal, but not 
globally maximal. Frequently,  a matching is a composite of a priori, canonical and 
maximal processes [88]. 

11.1. LABELED FINITE SETS IN R 3 

The most common use of  labeled finite sets in R 3 is an atomic configuration. 
It can be specified by giving the position vector u = (Ux,  Uy, Uz)  for each atom. If 
u i denotes the position vector of atom i, then a configuration on n atoms with respect 
to a reference frame is simply a vector U n = ( u l , . . . . U n )  in R 3n (arc p in fig. 3). 
The root mean square distance between two configurations U n = ( u l , . . .  , u  n )  and 

V n = ( v  1, . . . ,Vn ) iS  given by 

where 6 (u i ,  vi)  denoted the euclidean distance between the triples u i and v r 

Since the chemical features of  a configuration of  n points in R 3 are invariant 
under translations and rotations, eq. (! 1.1) is usually minimized with respect to those 
transforrnations. Ler ',)-denote the set of  all transformations expressible as combina- 
tions of  translations and rotations. Assume T is a transformation in i~)-. and write 
T ( U  n )  for the vector that results from letting T act on U n = ( u  1 . . . . .  u n) .  For example, 
assume T translates a configuration along the x-axis a distance of  1. Then, T(Un) is 
the vector ( v  1 . . . .  , v n )  where 

•i = (Uix ,  uo , ,  Uiz)  + (1 ,0 ,0) ,  i = 1 , . .  ,n. 

Write ~1 n = {T( [~) IT  E ~0--} for the set of  configurations in R 3n, where T varies over 
all transformations in .:~-. Then, )ü n contains essentially the same information as U, 
would if U n were to be expressed in terms of  internal coordinates. Assume ~ is a 
configuration in R 3n, and write l,';~ = {T(V,~)IT E 93}. The root mean square distance 
between ql  n and 'I; n can be defined as 

«3 (q/n, G )  = min  rms(Un, T(V,~)). (11.2) 
T ~ J 

By replacing the expression Õ(lli, Oi) 2 in eq. (11.1) with m i 6 ( u i ,  Oi) 2 where m i 

is the mass of  atom i and then using hq. (11.2), we obtain the metric developed by 
Mezey [91,92] using mass-weighted cartesian coordinates [93]. 

The distance in eq. (11.1) can be viewed as the length of  a straight line 
connecting U n and V n. One can also think of  distance along a continuous curve 
originating at U n and terminating at V n . These generalizations are made in Mezey [94] 
using mass-weighted coordinates. 

Equation (11.2) is based on an a priori matching specifying that atom i of  U n 

is to be paired with atom i of  ~ .  A maximal dissimilarity measure can be specified 
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by means of permutations defined on the indices. Let P denote a permutation of the 
indices ( 1 , . .  ,n), and let P(Un) denote U,, after the indices have been permuted. 
For example, assume P interchanges indices 1 and 2. If U 3 = (ul ,  u2, Ua), then P(Un) 
= (uz, ul ,  u 3). When a permutation maps index i to index ]', we require that any 
associated labels, such as the types of the atoms, be identical. Let !~ denote the set 
of admissible permutations. A minimal root mean square dissimilarity measure between 
ql n and l/n is given by 

d4(q~l,"~J ) = min rms(Un, To P(Vn)), (11.3) 
T E ',!J 

where o denotes the composition of two functions. To our knowledge, equation (11.3) 
has never been computed except for configurations involving only a small number of 
atoms. The preceding methods of superimposing 3D chemical descriptions provide 
computationally accessible approximations to (11.3). 

The dissimilarity measures in eqs. (11.1) to (11.3) do not seem to have been 
extended to configurations involving differing numbers of points. They could be, at 
least in principle, using the group similarity methods of cluster analysis [95] or a 
slight modification of the scoring methods proposed in Kuntz et al. [6] and Des- 
Jarlais et al. [7]. The minimum steric difference proposed by Balaban et al. [96] 
can compare configuration sets with differing numbers of points. Here, if a pair of 
points u and v satisfy an arbitrarily defined proximity constraint, they are called 
superimposable. The minimum steric difference is a weighted count of the number 
of nonsuperimposable atoms, where the weight is based on the group of the atom in 
the periodic table. The authors do not clearly specify the rigid transformations used 
to set up their matching. 

Root mean square measures are commonly used in checking proposed functional 
correspondences between molecules. They are inc, reasingly being used in the retrieval 
of 3D substructure querying [97,98]. They are also used to study how the shape of 
the charge density distribution changes with a change in conformation [99]. The 
minimum steric difference has been used in quantitative structure-activity studies 
of pharmacophores [96]. Finally, the computation of the distance along a reaction 
path in R an [94] is used in the study of Hammond's postulate using explicit concepts 
of similarity [100]. 

11.2. SURFACES 

Chemical descriptions of surfaces in R 3 are just now being introduced into 
MSA. Van der Waals surfaces and electrostatic potential contours [88] are examples. 

• (Section 1 references related work on surface complementarity, and section 13 covers 
groups abstracted from surfaces.) 

In comparing two surfaces of two molecules, Chau and Dean [101] begin 
with a canonical matching of the two molecules which superimposes the molecular 
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centroids. A set of  rays emanating from the superimposed centroids are defined. Let 
Yk and z k denote the length along the ray where surfaces Sy and S z first intersect 
the k th ray. Chau and Dean compute the correlation coefficient between (y~ . . . . .  y,~) 
and (z I . . . .  ,z n) defined by eq. (4) as a measure of similarity. They also calculate 
the correlation coefficient based on the tanks [79]. To date, their work has been 
primarily directed toward finding optimal matches between two surfaces. 

Along a different line, Leicester et al. [102] represents a surface by a convergent 
series of spherical harmonics as given by 

oo + 1  

ù(0,0t Z Z «,m : }~" (o, O), 
1 = 0  m = - 1  

(11.4) 

where ( r (0 ,0) ,  0 ,0 )  denotes a point oll the surface expressed in spherical coordinates 
(arc u in fig. 3). A vector consisting of the coefficients in (11.4) is formed (arc n in 
fig. 3). For computational reasons, an upper limit is set for the index l. A dissimilarity 
measure is obtained by multiplying the vector of coefficients of one surface by the 
complex conjugate of the vector of coefficients of the other surface. The complex 
conjugate is used because the coefficients may be complex numbers. This dissimilarity 
measure is a generalization to complex numbers of the square of the dissimilarity 
measure of eq. (5.2). Leicester et al. [102] note the possibility of using interactive 
graphics to obtain various a priori matchings so as to minimize their dissimilarity 
measure. 

1 1.3. I N T E G R A B L E  SCALAR F'IELDS 

Chemical descriptions used in molecular similarity analysis that involve 
integrable functions defined over R 3 are quite varied. Perhaps the most common are 
3D volumes [ 8 9 , 1 0 3 - 1 0 6 ] .  However, electron densities [107] and molecular 
orbitals [88] are also being studied. 

Some proximity measures for integrable functions f and g include the L 1 
metric 

uv(Lg) = f l f - « l d u ,  (11.5) 

the L 2 or euclidean metric 

p8(. / :g) = ( f ] f ( ù ) - g ( u ) l  2du)  1/2 (11.6) 

and the correlation coefticient 

f/(u)g(u)du 
sT(]ig) = [ f  f2(u)du fg2(u)du]U 2 (11.7) 



M.A. Johnson, Molecular similarity 139 

If V is a volume in R a , then by defining f(u) = 1 if u is inside V and f(u) = 0 if u 
is not in V, we obtain a number of  common proximity measures based on volumes. 
For example, the numerator in (11.7) would correspond to the volume intersection 
of Hopfinger [89] and the metric in eq. (11.5) would correspond to a measure of the 
excluded volume of Motoc et al. [105].  Implicit in the definition of the proximity 
measures associated with eqs. (11.5) to (11.7) is a reasonable matching of the domains 
of the two integrable functions. 

Similarity based on integrable functions in R 3 have been used primarily in 
pharmacophore analysis [105] and in developing quantitative structure-activity 
relationships [89,96,107] .  Carbó and Domingo [88] presm a similarity analysis of 
molecular orbitals. 

12. D i s t a n c e  m a t r i c e s  

Any finite set U = { u 1 . . . .  , u k } with a distance 6 (Lli, l l]) = mq defined between 
every pair of  points u i and u~ defines a distance matrix M = {mi/}, where rnq denotes 
the matrix element in the / th row and /'th column. Call M the distance matrix 
of  U. For example, mii could denote the through space distance between atoms i 
and /' of a configuration in R 3 (arc q in fig. 3). Note that enantiomeric distinctions 
are lost in this mapping of  a configuration to a distance matrix. 

Let 34 = {mi/} and N ={ni]} be two distance matrices of order k. By repre- 
senting M by the vector (1/711, . . . , talk,  . . . ,mkl . . . . .  mkÆ), one can easily see that 

B9(M, N)  = l~Tij - rl i j)  2 (12.11) 

is a metric on the space of distance matrices qf order k (arc l of fig. 3). Denote 
B9(M,N) divided by x / [ k ( k -  1)] by rmsd(M,N). Danziger and Dean [90] call 
rmsd (M, N) the root mean square of  the difference distance matrix. 

Equation (12.1) is based on an a priori matching of  the i th  row of  M with 
the / th row of  N. Such an a priori matching is natural when assessing the similarity 
between the distance matrices of two conformations of a sinne compound. At other 
times, a maximal matching is desired [90]. Proceeding as we did in the development 
of  eq. (11.3), let M =  {mi/} denote the distance matrix associated with a set 
U = { u l , . . .  ,uk}. Let P denote a permutation of the indices of the elements of U, 
and let P(M) = {mp(i)p(/)}. Again, let !9 denote the set of  admissible permutations 
which preserves the values of  any labeling function defined on U. Then 

ds(M, N )  = min rmsd(M, P(N))  
P ~ ~  

is a dissimilarity measure defined on distance matrices. 

(12.2) 
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Difference distance matrices have been used for visualizing similarities and 
dissimilarities in compounds based on their in teratomic distances [108,109]. Although 
computational solutions of (12.2) are still beyond current computational speeds, 
useful approximations are available [6,90,98].  These approximations are used in 
screening matchings used in computational approximations to eq. (11.3) for 3D 
finite sets. Root mean square dissimilarity measures are also being used to screen 
compounds in 3D substructure querying [98]. 

13. Groups 

Mezey [111,112] shows how a number of different groups can be used to 
describe relationships between the concave, convex and saddle point regions of. tor 
example, van der Waals surfaces and potential energy hypersurfaces (arc v in fig. 3). 
The details of abstracting these groups from a three-dimensional surface involve 
concepts in algebraic topology, and the reader is referred to the original articles for 
details. 

For the most part. the similarity concepts employed in the articles are based 
on the assumption that molecules with shapes mapped to isomorphic groups will 
exhibit similar chemical behaviors. Those molecules mapped to the same group form 
an equivalence class. As noted earlier, the use of the equivalence concept of similarity 
is not in itself sufficient to include a study in this investigation. However, Mezey [112] 
also makes use of the fact that the groups are partially ordered by the subgroup 
relation. A group is associated with a truncated reaction surface in which the surface 
has been removed at points in which the potential energy exceeds a truncation value. 
This results in a surface with holes. Different hole structures associated with different 
truncation values may or may not be mapped to the same group. The partial ordering 
of groups was used to relate the changes in the hole structures. Interestingly, the 
development of this partial ordering makes no use of matchings. 

In the work just described, a group is associated with a single entity, a reaction 
surface with a particular hole structure. In what follows, a group [113] and a set of 
Betti numbers [114] is associated with a pair of molecules. This association will be 
called a group association and denoted by "y(D, D')  in the first case, and will be 
called a Betti association and denoted by ~(D. D ' )  in the second case. A proximity 
measure u(D, D')  also associates something (a number) with a pair D and D' of 
mathematical structures. A proximity measure takes values in a set whose members 
are numbers. In constrast, group and Betti associations take values in sets whose 
members are groups and sets of Betti numbers, respectively. Because notions of 
distance, addition and multiplication are defined on the set R of real numbers, we can 
do many things with proximity measures. It remains to be seen what can be done 
with group and Betti associations. Mezey and coworkers [114] provide one illustration 
of how Betti associations might be used to explain the regioselectivity of chemical 
reactions. 
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14. S u m m a r y  no tes  

Table summarizes where in the text that notes, reßrences or discussion can be 
found relevant to the derivational arcs in fig. 3. Proximity measures have been proposed 
in MSA for all of the mathematical spaces in fig. 3 with the exception of the space 
of stereochemical structures. Mathematical representations of a stereochemical 
structure are currently being proposed. Possible candidates include numbers [115], 
canonically defined character strings [116], and n-ary relations [117]., Further 
work needs to be done in this area because of the criticat role stereochemical structures 
play in fig. 3. 

Table 1 

Scctions containing material relevant to the various convcrsion arcs in fig. 3 

Arc Section Art Section Art Scction Art Scction Arc Section 

a 2 , 8  b 7 c 7 d 4 , 5  e 6 

f 6 g 9 h 9 i 10 j 8 
k 9 l 12 m 10 n 11.2 o 11 
p 11.l q 12 r 11 s ll t 11.2 
u 11.2 v 13 w 9 

Matchings. partial orders and proximity measures are distinct mathematical 
concepts of similarity. Matching is emphasized when se~Lrching for interesting com- 
monalities between compounds, partial orderings are emphasized when querying 
databases for compounds with specified structural attributes, and proximity measures 
are emphasized when clustering compounds and predicting chemical properties. 
However, as we have seen, these three similarity concepts are orten closely inter- 
twined. Maximal matchings are usually defined in terms of partial orderings and many 
similarity measures are defined in terms of maximal matchings. In particular, the 
city-block metrics (eqs. (5.1), (7.1), (8.1), (8.2), (9.1), (11.5)) fall under the general 
theory of value functions defined on partially ordered sets [118-121] .  In fact, the 
concepts of equivalence, matching, partial order, and proximity all fall under a more 
general theory of fuzzy relations [122]. However, fuzzy relations have not yet been 
used in MSA. 

From another angle, we see that the computational accessibility of numbers, 
codes, finite sets, and product spaces result in their wide use in similarity applications 
involving chemical databases. The fact that one can visually superimpose 3 D structures 
on the computer has resulted in the wide use of3D superpositioning in finding interesting 
commonalities between molecules. The discrete nature of labeled graphs possibly 
underlies their wide use in computationally generating structures and modeling 
reaction pathways. Almost all of these mathematjcal spaces are being used in predicting 

chemical properties. 
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This study has pointed out the mathematical  structures and mathemat ical  
concepts of  similarity that help to relate the diverse chemical descriptions and 

concepts of  molecular similarity in MSA. A better  knowledge of  the relationships 

between the chemical descriptions and similarity concepts  of  MSA should lead to a 

bet ler  understanding of  the development  and application of  these concepts.  
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